
	

Lecture Handout
Week 6: Oct. 5-7, 2015	

Suppose you had nine “doors” with unknown numbers behind them:

?? ?? ?? ?? ?? ?? ?? ?? ??

Puzzle #1: If we know nothing about the data, what is the best (“optimal”)
strategy for finding the number 42?

1) Start with first one, and go through each and every element

 …we call this strategy:_Linear Search_____
Puzzle #2: If we know the data is sorted, what is the best (“optimal”)
strategy for finding the number 42?

1) Pick a middle element

2) Remove the half of the data that is no longer relevant

3) Repeat 1-2 with the remaining data

 …we call this strategy: _____Binary Search____________
Puzzle #3: In Computer Science, when we examine strategies for solving
problems we often look at the worst case running time of an algorithm:

Amount of Data Linear Search Binary Search

7 7
3

15 15
4

31 31
5

n n
ln (n+1)/ ln(2) = log2n

Key Takeaways: Advantage:
Does not require the
input data to be sorted.
Easy to write and
efficient for short lists.

Disadvantage: very time
consuming in case of
long lists.

Advantage:
Takes much lesser time

Disadvantage:
Requires the input data
to be sorted.

In Activity 5, you used the Illini Women’s Soccer Team data to understand
arrays of objects:

1
2
3
4

..
15

var games = [
 { score: [4, 1], opponent: "Oakland" },
 { score: [1, 0], opponent: "Illinois State" },
 { score: [5, 2], opponent: "TCU" },
 ...
];

Puzzle #4: Write a JavaScript function named findOpponent that uses a
linear search to find an opponent in the games Array and return that game.
(This function should return the entire object (eg: games[i]), not just the
opponent’s name or score.)

var findOpponent = function(opponent, games) {
 for (var i=0; i< games.length; i++) {
 if (games[i].opponent == opponent) {
 return games[i];
 }
 }
};

var answer = findOpponent(“Purdue”, games);
alert(answer);

Puzzle #5: Given the Array games arranged in the same way as it was in the
Activity and on the top of this page, can we use a binary search to search
for an opponent?
No. Because it is not sorted.

Why?

If we cannot, what can we do to make it so?

Sorting

Suppose we want to sort our data:

50 34 87 13 11 58 17 29 52

There are a lot of ways to rearrange the data, let us agree on one:

1) Find the smallest value in the data

2) Swap the smallest value with the first element
 (now the first value is sorted)

3) Repeat (1)-(3) with the remaining data.

 …we call this strategy: ________Selection Sort________.

Puzzle #6: Using our data set we want to sort, let’s run our sorting algorithm:

Round # 50 34 87 13 11 58 17 29 52

1 11 34 87 13 50 58 17 29 52

2 11 13 87 34 50 58 17 29 52

3 11 13 17 34 50 58 87 29 52

4 11 13 17 29 50 58 87 34 52

5 11 13 17 29 34 58 87 50 52

6 11 13 17 29 34 50 87 58 52

7 11 13 17 29 34 50 52 58 87

8

Puzzle #7: What is the worst case running time for each algorithm?

Data Size Linear Search Binary Search Selection Sort

9 9 3-4 45 (=9+8+7+6 ----)
∼ 81 (= 9*9 = 81)

100 100 6-7 10,000

n n log(n) n2

The following is the same data set as earlier:

1
2
3
4

..
15

var games = [
 { score: [4, 1], opponent: "Oakland" },
 { score: [1, 0], opponent: "Illinois State" },
 { score: [5, 2], opponent: "TCU" },
 ...
];

Puzzle #8: Write a JavaScript function named sortByOpponent that uses a
selection sort to sort the games array based on the name of the opponent.

var sortByOpponent = function(games) {

 // Loop through the array:

 for (var i=0; i<games.length; i++) {

 // Declare a variable to store the smallest element:
 var min = i;

 // Loop through the array again, looking for the smallest
 // element that has not been put in the correct position:

 for (var j=i+1; j<games.length; j++) {

 if(games[j].opponent < games[min].opponent) {
 min = j;
 }

 }
 // Swap the smallest element with the current element:

 var temp_opponent = games[i].opponent;
 games[i].opponent = games[min].opponent;
 games[min].opponent = temp_opponent;

 }

};

Reminder: CS 105 Midterm Exam
Monday, October 12, 2015, 7:30pm – 9:00pm

(Cannot make it? Last day to sign up for a conflict is Wednesday, Oct. 7th!)

